

Color Models for MapInfo

Jacques Paris

jacques@paris-pc-gis.com

April 2002

This presentation of color models is done in the perspective limited by the ways
MapInfo uses color. It cannot be taken as a scientific basis and in my attempts at
translating various sources I may have introduced some errors or biases. Any
correction or comments are welcome.

Table of Contents

1 – Overview

2 - RGB model

3 - CMY, CMY(K), CMYK models

4 - HSV model

5 - HSL model

6 - Conversions between RGB and various models

6-1 RGB <> R, B, G
6-2 R, G, B <> CMYK
6-3 R, B, G <> H, S, V
6-4 R, B, G <> H, L, S

7 - MapBasic Code for some Conversion Functions
 7-1 RgbComp

7-2 Rgb2hsv
7-3 Hsv2rgb

1 - OVERVIEW

Each color of the visible spectrum corresponds to a single wavelength. Light, white light
in particular, is formed by a combination of wavelengths and when it goes through a
prism, a beam of light breaks into a rainbow of colors with different intensities. The
descriptions of a precise color would require thus very involved means way too complex
for use in real life.

Color models have been developed to facilitate color transmission and reproduction.
They are used for two different purposes: as ways to depict as precisely as possible
colors as they can be perceived by man, or as means to rebuild colors artificially, mainly
with electronic means or printing machinery.

The conception, development and refining of descriptive scientific models is a very
involved scientific undertaking. The works of the CIE (Commission Internationale de
l’Éclairage) in particular are impressive (http://www.cie.co.at/cie/). A good practical
reference is http://www.adobe.com/support/techguides/color/colormodels/cie.html

But they are of no immediate use for the user of computer applications because he deals
mainly with two interfaces, the computer screen and the printed sheet and that
application of the “scientific” models to these equipments is not easily done, or is directly
impossible practically.

A tool may impose its own way on the user. The color monitor has been developed using
a technology for showing colors by using pixels made of 3 “phosphors” emitting each a
different color, the human eye recombining those basic colors to “see” one unique spot
of a “complex” color.

This is the basis of the RGB model: adding RED, GREEN, and BLUE (RGB) with
varying intensities will create all the colors of the rainbow. As these colors when added
together at their maximum intensity will produce White, they are called additive
primaries, also light primaries.

Let us imagine laying down all the colors around in a circle. When moving away from a
primary, this one starts to play a small role while the approaching primary will increase
its own. Having gone around for 180 degrees, there is none of the original primary left;
this color called a complementary primary is made in equal part of the primaries on each
side, and of none of the opposite primary

http://www.cie.co.at/cie/
http://www.adobe.com/support/techguides/color/colormodels/cie.html

If the primary colors are also called light, it is
because they are used to create “colored lights”.

The secondary colors are those used to mix
paints which color come from reflectance and not
from luminescence; hence their alternate naming
as printing primaries (allusion to inks) and
subtractive primaries (they are “extracted from”
an image to form the films used in printing).

The explanation that follows is taken from
http://www.adobe.com/support/techguides/color/c
olormodels/rgbcmy.html and is another illustration
of how tools can impose some particular ways to
handle “reality”.

“The CMY model used in printing lays down
overlapping layers of varying percentages of

transparent cyan, magenta, and yellow inks. Light is transmitted through the inks
and reflects off the surface below them (called the substrate). The percentages of
CMY ink (which are applied as screens of halftone dots), subtract inverse
percentages of RGB from the reflected light so that we see a particular color:

In the illustration above, a white substrate that reflects 100% of the light is printed
with a 17% screen of magenta, a 100% screen of cyan, and an 87% screen of
yellow. Magenta subtracts green wavelengths, cyan subtracts red wavelengths, and
yellow subtracts blue wavelengths from the light. The reflected light, then, is made
up of 0% of the red wavelengths, 44% of the green wavelengths, and 29% of the
blue wavelengths. [...]

In theory, the combination of cyan, magenta, and yellow at 100%, create black (all
light being absorbed). In practice, however, CMY usually cannot be used alone. Due
to imperfections in the inks and other limitations of the process, full and equal
absorption of the light isn't possible; thus a true black or true grays cannot be
created by mixing the inks in equal proportions. The actual result of doing so results
in a muddy brown color. In order to boost grays and shadows, and provide a genuine
black, printers resort to adding black ink, indicated as K. Thus the practical
application of the CMY color model is the four color CMYK process.”

http://www.adobe.com/support/techguides/color/colormodels/rgbcmy.html
http://www.adobe.com/support/techguides/color/colormodels/rgbcmy.html

To the RGB model, we can add now the CYM model, at least the basis of that model
that is implemented generally by using a fourth dimension Black and is thus referred as
CYM(K) or CYMK model .

The RGB model has certainly some very valid technical justification, but it is not the way
people play generally with colors. One would imagine rather that they start with a basic
mix to which they add white to lighten it or black. Several attempts have been made to
replicate in some way that practical way to “paint”. A family of models is based on the
RGB color cube and some transformation of the space reference system, such as using
the White-Black diagonal of the cube (the gray scale) as one axis. MapInfo is using in
some circumstance the HSV model, but as its “cousin” HSL is also in wide use, its
differences to HSV are worth noting.

2 - RGB Model

The RGB model is based on the use of the 3 primary colors RED, GREEN, and BLUE
and of their additive property; any color is obtained by the addition of the basic
components in specific proportions.

The RGB model is used in a television or computer monitor. The colored spots of a TV
screen emit three colors, and the sum of these colors determines the impression to the
eye.

The values for each component vary from 0 to a maximum that depends upon the “size”
of the binary variable used to store them. On a 8-bit machine, the maximum is of 15 and
the number of different colors of 16^3=4096; on a 16-bit platform, each component can
reach 255 and the combinations of the 3 exceeds 16 million colors (256^3=16 777 216).

If the three components are 0, the result is black. If they all are at their maximum, the
color is white. If they are all equal, the color
will be gray; they are thus only 256 shades of
gray, including pure white and pure black.

The domain of variation of the components can be represented in 3 dimensions by what
is called a “Color Cube”. Its “skeleton” allows to show in particular the “path” of the gray
scale

One can see only 3 faces of the cube at the time; to view
all its faces, the cube is presented split into two, the
outside faces fronting the viewer on top, the opposite
exposing their internal side (luckily they are transparent!)
at the bottom.

This drawing was produced with a MapBasic program; it
contains 6 levels in each component, which means there
are 216 different colors in this table. With a higher
number of levels, the number of colors would exceed the
maximum of 256 allowed in a single table and some will
not be “exact” but duplicates from the “first” 256 instead
of corresponding to their specified components. (see
“Limitations in the number of different colours” in the
main document)

A color can be defined by using the numerical values of its components. The following
table shows three different ways to express the values: decimal 0-1.0, percentage 0-
100%, or byte value, an integer from 0 to 255. If MI uses exclusively the 0-255 integer
notation, it should not hide the fact that color is a “continuous” phenomenon and that
using integers to define its components replaces a linear continuous increase by a
limited number of equal steps, however tiny these steps be.

Color name R G B
Red 1.0 – 100% – 255 0 0
Green 0 1.0 – 100% – 255
Blue 1.0 – 100% – 255
Cyan 0 1.0 – 100% – 255 1.0 – 100% – 255
Magenta 1.0 – 100% – 255 0 1.0 – 100% – 255
Yellow 1.0 – 100% – 255 1.0 – 100% – 255 0

3 - CMY, CMY(K) CMYK models

The CMY model is a simple transposition of the RGB model in its own space. Its
representation as a schematic cube is practically the save, save for some “rotation”
among the colors.

But this is a simplified version of the model that involves a fourth dimension: the color
Black. If two variants are shown, it is to point at the situation that in some contexts Black
enters in play only when the color is Gray, variant CMY(K), while in the full model Black
can enter into play with any color, variant CMYK.

The reason for that distinction comes from the conversion problem, the CMY(K) is the
variant one must use with a conversion algorithm, because there does not seem to be
any mathematical procedure to make a full conversion. It is even written that production
of CMYK images (to make films for printing) is a machine dependent operation. One
thing seems sure, MI will never handle colors with a full CMYK interface, it will at the
most create some CMYK output that could be used only for what it was intended
originally: printing.

The example that follows is a classic of an image and its 4 components.

4 - HSV model

The H stands for Hue. That dimension comes from an organization of the colors starting
with original six primaries and generalized to a continuous circle. A hue indicates the
position of the color on the circle by the angle it “makes” with the origin 0 for Red. There
are different ways to expressed that angle, in degrees or in percentages or ratios always
relating the actual degrees to the full 360 degrees circle.

Hue is the position relative to the origin (red=0) measured in degrees.

 degrees ratios Percent.
Red 0, 360 0, 1.0 0, 100.
Yellow 60 .167 16.7
Green 120 .333 33.3
Cyan 180 .500 50.0
Blue 240 .667 66.7
Magenta 300 .833 83.3

The S is for Saturation (also called Chroma) that measures “the strength or purity of a
color. Saturation represents the amount of gray in proportion to the hue, measured as a
percentage from 0% (gray) to 100% (fully saturated). On the standard color wheel,
saturation increases from the center to the edge.” 1

“Saturation refers to the dominance of hue in the color. On the outer edge of the hue
wheel are the 'pure' hues. As you move into the center of the wheel, the hue we are
using to describe the color dominates less and less. When you reach the center of the
wheel, no hue dominates. These colors directly on the central axis are
considered desaturated. These desaturated colors constitute the grayscale; running
from white to black with all of the intermediate grays in between. Saturation, therefore, is
the dimension running from the outer edge of the hue wheel (fully saturated) to the
center (fully desaturated), perpendicular to the value axis.” 2

The last dimension is L for lightness-darkness. How light or dark a color is, is referred to
either as the color lightness or value. In terms of a spectral definition of color, value
describes the overall intensity or strength of the light. That dimension varies from 0
(darkest) to 100 (brightest) along an axis perpendicular to the “color wheel”.

1 http://www.adobe.com/support/techguides/color/colormodels/rgbcmy.html

2 http://www.ncsu.edu/scivis/lessons/colormodels/color_models2.html#secondary

The three dimensions put together give
to a hexacone

but more likely to be more like that imag

In order to appreciate the impact of c
application available on http://ftp
produces “ground plans” or color disks
same size) and “side plans” or slice alo
examples:

V
A
L
U
E

s a volume shaped like a cone, some reducing it

e

hoices in this model, one can use the “slicer”
.lecad.uni-lj.si/pub/vaje/resitve/4.15/hsv.html; it
for a given Value (in this model disks have all the
ng the value axis for a given Hue. Here are some

http://ftp.lecad.uni-lj.si/pub/vaje/resitve/4.15/hsv.html

 value 60% value 80% value 100%

hue 90º hue 225º hue 345º

5 - HLS model

Or is it HSL?. A variant of the HSV model, or a different handling of the color cube? I am
including that model in this document to give a fuller coverage of that class of models
even though it would not be required in the stricter perspective of the use of color in
MapInfo. Its description will be more limited.

Hue has the same definition as in the HSV model
Saturation is the degree to which the hue differs from a neutral gray. From 0% (no color
saturation) to 100%, (fullest saturation of a given hue at a given percentage of
illumination)
Lightness is the level of illumination. From 0% (no light > appears black) to 100% (full
illumination > appears white).

It is easy to imagine the representation of the volume of the color space as a simple
adaptation of the RGB color cube. The vertical axis of that volume corresponds to the
White/Black diagonal of the cube and the section through the middle of that axis can be
viewed as the projection on that plan of the 6 other corners of the cubes, another way to
“build” the color wheel.

Theoretically described as a “double hexacone” (compared to the single hexacone for
HSV), it is more like an ellipsoid, rounded at its girth, pointed at the extremities. At 50%
lightness, the colors are their “fullest” (below they appear darker, above lighter).

A section along the main axis of the double hexacone volume would yield something like
that next image.

6 - CONVERSIONS BETWEEN RBG AND VARIOUS MODELS

6-1 R,G,B <> RGB

Color codes in MI are based on the RGB model where values of the 3 components
define a unique number. Component values fit in a byte variable and consequently their
are integral values ranging from 0 to 255. A null value indicate the total absence of that
component, 255 its full contribution.

The general formula tying together components and code is

RGB = (65536 * R) + (256 * G) + B

R,G,B > RGB

A MapBasic function computes the code from the components:

RGB(red, green, blue)

To see how it works, open the MapBasic window (menu Options > Show MapBasic
window), type the following line

print RGB(123,234,100)

and run the command (keep cursor on the line and <Enter>). The result is displayed in
the Message window (that is open automatically if it is not already open).

RGB > R,G,B

If RGB combines the 3 components in one number, the reverse conversion from RGB
code to R, G, B components is not provided for in MapInfo. The user that needs to
specify a color in a style requester when he knows only its RGB code must calculate the
three components with these successive formula:

R = RGB \ 65536
G = (RGB - R*65536) \ 256
B = RGB - R*65536 - G*256

\ stands for “integral division” and returns the integral part of the quotient.

The code for the function RGBComp implementing those equations is given in 7-1. A
simple translator demo tool using that function is also available as RGB2R_G_B.MBX in
Nu_ColorFun.zip.

6-2 R, G, B <> CMYK

As mentioned already, there does not seem to be a way to migrate from RGB to CMYK
in a full manner. There are some partial transformations such as Bill Thoen used in is
HexCell application. The tabular part of the results list the equivalence between the two
systems

Even if the column heading is CMYK, one can see there is no Black in the rows. The
formula used for the translation is a standard application of general equations and as it is
not able to calculate the level of black used in combination with colors, it sets it equal to
zero. An extension of the formula when R=G=B not implemented in Hexcell version 2.00
is to set C=M=Y=0 and calculate K with the general formula using any color component.

R, G, B <> C, M, Y

The general formulas are

Cyan = 1 – Red Red = 1 - Cyan
Magenta = 1 – Green Green = 1 – Magenta
Yellow= 1 – Blue Blue = 1 – Yellow

They must be adapted to the MI context, such as
Cyan = Int((255 – Red) / 2.55 + 0.5)
Magenta = Int((255 – Green) / 2.55 + 0.5)
Yellow = Int((255 – Blue) / 2.55 + 0.5)

A glance at the formula shows that while a RGB component ranges from 0 to 255, the
corresponding CMY component varies from 100 to 0. There are then fewer colors
defined by CMY than by RGB. However this is only for a simplified model (no Black) and
if only integral values are used; in reality, there is no theoretical constraints at using
decimal values, the general formulas indicating indeed the use of a decimal 0 –1 value.

R, G, B <> C, M, Y, K

The general formulas are not symmetrical as in the previous case. From RGB to CMYK
they are, once adapted to MI

Black = minimum(255 – Red, 255 – Green, 255 – Blue)
Cyan = (255 – Red – Black) / (255 – Black)
Magenta = (255 – Green – Black) / (255 – Black)
Yellow = (255 – Blue – Black) / (255 – Black)

C, M and Y range from 0 to 1, and Black from 0 to 255; it must be recalibrated after C,
M, Y are calculated.

The CMYK to RGB conversion formulas that give R, G and B in the 0-255 range are:

Red = INT((1 - minimum(1, Cyan * (1 – Black) + Black))*255 + 0.5)
Green = INT((1 - minimum(1, Magenta * (1 – Black) + Black))*255 + 0.5)
 Blue = INT((1 - minimum(1, Yellow * (1 – Black) + Black))*255 + 0.5)

According to some authors3, “these cheap and nasty transforms may be fine for printing
a bar chart or for spot colour on a newsletter but for even semi-critical applications the
colour reproduction is poor”. They go on to recommend much more involved procedures
calling first on the “CIE tri-stimulus values” before converting to CMYK, and that is way
beyond the scope of this document.

6-3 R, G, B <> H, S, V

I have implemented as part of “Palette Maker” two procedures to convert the component
values between the two systems. They are MapBasic adaptations of scripts I found on
the web. Besides the changes due to the language differences, I had to introduce
calibration factors to the output of RGB2HSV and to the input to HSV2RGB to reflect the
differences in the ranges between those used by MI and in the original code.

I would stress here the possible variation in the underlying color model used to establish
the conversion algorithm. Similar to HSV are the HSL but also HLS, HBS, HSB. It is
most important to make sure of the type of model before adopting the procedures or the
code that is offered.

Among potential sources are:

http://m3.polymtl.ca:3829/SColor.i3.ToHSV#ToHSV the origin of these scripts is
described as “Copyright (C) 1992, Digital Equipment Corporation. Last modified on Sat
Nov 28 1992”.

http://www.joochan.com/hsv-hls_rgb.html a Japanese site with luckily the code in clear
Pascal

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q29240 “HOWTO: Converting
Colors Between RGB and HLS (HBS) (Q29240)”, even if not exactly for HSV because it
gives in particular the reference to the basic work in this area:

Foley and Van Dam, "Fundamentals of Interactive Computer Graphics" (c 1982,
Addison-Wesley).

3 Adrian Ford and Alan Roberts, “Colour Space Conversions”, August 11, 1998 (coloureq.pdf)

http://m3.polymtl.ca:3829/SColor.i3.ToHSV#ToHSV
http://www.joochan.com/hsv-hls_rgb.html
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q29240

“Chapter 17 describes color spaces and shows their relationships via easy-to-
follow diagrams. NB this is a wonderful book, but if you are going to get a copy, I
suggest you look for the latest edition.”
From http://blas.mcmaster.ca/~monger/hsl-rgb.html (not on line April 1st, 2002)

The results of these functions are numerically very close to those displayed by MI in its
“Pick Color” requester; early tests showed some differences only on the H component.
However, using the output of one as the input to the other will show more noticeable
differences between original input and final output.

There are several causes to these differences, one, probably the most important, is due
to the use of integral variables and operations to deal with a continuous phenomenon.
Rounding errors can become compounded; I have not the expertise in this domain to
find a fully satisfactory solution. The MS article says it clearly: “There are potential
round-off errors throughout this sample. ((0.5 + x)/y) without floating point is
phrased ((x + (y/2))/y), yielding a very small round-off error. This makes many of
the following divisions look strange.”

The second cause of discrepancies is probably the use of different ways to express the
values of the components, i.e. their ranges of variations: in the HSV model, they are
0_240 in the MI context, 0_1 for H and S, 0_255 for V in the DEC procedures, something
else in others. That requires the use of scaling factors that adds to the rounding problem
already mentioned.

Computational procedures for RGB<>HSV

I was not able yet to consult the Foley and Van Dam reference and I would not be able
to describe the exact calculation principles. I have found “second hand” explanations4
that do not entirely satisfy me

RGB>HSV

1 - Find the maximum and the minimum of R,G,B
2 - S=(Max – Min) / Max
 V = Max
3 - R’ = (Max – R) / (Max – Min)

 G’ = (Max – G) / (Max – Min)
B’ = (Max – B) / (Max – Min)

4 - If S=0, the hue is undefined (monochrome color), otherwise
 if R = Max and G = Min >> H = 5 + B’
 and G <> Min >> H = 1 – G’
 if G = Max and B = Min >> H = 1 + R’
 and B <> Min >> H = 3 – B’
 if R = Max >> H = 3 + G’
 otherwise >> H = 5 – B’

I have some reservation about the last two conditions (typos in the
transcription?), the first one about R should probably be about B because the
situation (B = max) is not covered by the first 4 conditions and it is incomplete

4 Travis as reported by Adrian Ford and Alan Roberts, op. cit..

http://blas.mcmaster.ca/~monger/hsl-rgb.html

because it does not differentiate between the two situations (expressed in two
ways: R min or not, or G not min or min)

5 - H = H * 60
 S and V have a 0-1 range, H 0-360 (degrees) range

HSV > RGB

1 - Hex= H / 60
2 - primary color = INT(Hex)
 secondary color = Hex – primary color
 a = (1 – S) * V
 b = (1 – (S * secondary color)) * V
 c = (1 – (S * (1 – secondary color))) * V
3 - if primary color =
 0 >> R = V G = c B = a
 1 >> R = b G = V B = a
 2 >> R = a G = V B = c
 3 >> R = a G = b B = V
 4 >> R = c G = a B = V
 5 >> R = V G = a B = b

6-4 R, G, B <> H, S, L

Computational procedures for RGB<>HSL

From http://blas.mcmaster.ca/~monger/hsl-rgb.html:

Notice the specific scales that are used for input and output.

RGB > HSL

1 - Convert the RBG values to the range 0-1

Example: from the video colors page, colorbar red has R=83%, B=7%, G=7%, or
in this scale, R=.83, B=.07, G=.07

2 - Find min and max values of R, B, G
In the example, maxcolor = .83, mincolor=.07

3 - L = (maxcolor + mincolor)/2
For the example, L = (.83+.07)/2 = .45

4 - If the max and min colors are the same (i.e. the color is some kind of grey), S is
defined to be 0, and H is undefined but in programs usually written as 0. (all is done)
5 - Otherwise, test L.

If L < 0.5, S=(maxcolor-mincolor)/(maxcolor+mincolor)
If L >=0.5, S=(maxcolor-mincolor)/(2.0-maxcolor-mincolor)
For the example, L=0.45 so S=(.83-.07)/(.83+.07) = .84

6 - Compute
If R=maxcolor, H = (G-B)/(maxcolor-mincolor)
If G=maxcolor, H = 2.0 + (B-R)/(maxcolor-mincolor)
If B=maxcolor, H = 4.0 + (R-G)/(maxcolor-mincolor)

http://blas.mcmaster.ca/~monger/hsl-rgb.html

For the example, R=maxcolor so H = (.07-.07)/(.83-.07) = 0
7 - To use the scaling shown in the video color page, convert L and S back to
percentages, and H into an angle in degrees (ie scale it from 0-360).
8 - From the computation in step 6, H will range from 0-6. RGB space is a cube, and
HSL space is a double hexacone, where L is the principal diagonal of the RGB cube.
Thus corners of the RGB cube; red, yellow, green, cyan, blue, and magenta, become the
vertices of the HSL hexagon. Then the value 0-6 for H tells you which section of the
hexagon you are in. H is most commonly given as in degrees, so to convert

H = H*60.0
9 - If H is negative, add 360 to complete the conversion.

HSL < RGB

1 - If S=0, define R, G, and B all to L (all is done)
2 - Otherwise, test L.

If L < 0.5, temp2=L*(1.0+S)
If L >= 0.5, temp2=L+S - L*S
In the colorbar example for colorbar green, H=120, L=52, S=79, so converting to
the range 0-1, L=.52, S=.79, so temp2=(.52+.79) - (.52*.79) = .899

3 - Compute
temp1 = 2.0*L - temp2
In the example, temp1 = 2.0*.52 - .899 = .141

4 - Convert H to the range 0-1
 In the example, H=120/360 = .33
5 - For each of R, G, B, compute another temporary value, temp3, as follows:
 for R, temp3=H+1.0/3.0
 for G, temp3=H
 for B, temp3=H-1.0/3.0
 if temp3 < 0, temp3 = temp3 + 1.0

if temp3 > 1, temp3 = temp3 - 1.0
 In the example, Rtemp3=.33+.33 = .66, Gtemp3=.33, Btemp3=.33-.33=0
7 - For each of R, G, B, do the following test:
 If 6.0*temp3 < 1, color=temp1+(temp2-temp1)*6.0*temp3
 Else if 2.0*temp3 < 1, color=temp2
 Else if 3.0*temp3 < 2, color=temp1+(temp2-temp1)*((2.0/3.0)-temp3)*6.0
 Else color=temp1

In the example,
3.0*Rtemp3 < 2 so R=.141+(.899-.141)*((2.0/3.0-.66)*6.0=.141
2.0*Gtemp3 < 1 so G=.899
6.0*Btemp3 < 1 so B=.141+(.899-.141)*6.0*0=.141

8 - Scale back to the range 0-100 to use the scaling shown in the video color page
 For the example, R=14, G=90, B=14 Color in video

7 - MAPBASIC CODE FOR SOME CONVERSION FUNCTIONS

As mentioned in the text, these functions can certainly be improved in their
precision, i.e. in the simultaneous use of integer values and decimal calculations.
They may not follow the exact computational procedures due to a different origin
of their original codes.

‘==
7-1 rgbcomp
‘==
declare function rgbcomp(byval rgbcode as integer, rcomp as smallint, gcomp as smallint,
 bcomp as smallint) as logical

‘==
function rgbcomp(byval rgbcode as integer, rcomp as smallint, gcomp as smallint,
 bcomp as smallint) as logical

‘ return FALSE if RGBcode out of range

if rgbcode<0 or rgbcode>16777215 then
rgbcomp=0
exit function
end if
rcomp=int(rgbcode/65536)
gcomp=int((rgbcode - rcomp*65536)/256)
bcomp=rgbcode - rcomp*65536 - gcomp*256
rgbcomp=1

end function

‘==
7-2 rgb2hsv
‘==
declare function Rgb2Hsv(byval rgbr as smallint, byval rgbg as smallint,
 byval rgbb as smallint, hsvh as smallint, hsvs as smallint, hsvv as smallint) as logical

‘==
function Rgb2Hsv(byval R as smallint, byval G as smallint,byval B as smallint,
 H as smallint, S as smallint, V as smallint) as logical

'**************************************
' Input R, G, B, 0-255 *
' Output H, S, V, 0-240 *
' Return False for unacceptable R,G,B *
'**************************************
dim max, min, rr, gg, bb, ht as float
Rgb2Hsv=1
if R<0 or R>255 or G<0 or G>255 or B<0 or B>255 then
 Rgb2Hsv=0
 exit function
end if
rr=r/255
gg=g/255

bb=b/255
max=maximum(maximum(rr,gg),bb)
min=minimum(minimum(rr,gg),bb)
V= int(max*240 + 0.5)
if max <> 0 then
 S = int((max-min)*240/max + 0.5)
 else S = 0
end if
if S = 0 then
 H = 0
 else
 if rr = max then
 ht = (gg-bb)/(max-min)
 elseif gg = max then
 ht = 2 + (bb-rr)/(max-min)
 else
 ht = 4 + (rr-gg)/(max-min)
 end if
end if
ht=ht/6
if ht < 0 then ht = ht + 1 end if
H=INT(ht*240 + 0.5)

end function

‘==
7-3 hsv2rgb
‘==
declare function Hsv2Rgb(byval hsvh as smallint, byval hsvs as smallint, byval hsvv as smallint,
 rgbr as smallint, rgbg as smallint,rgbb as smallint) as logical

‘==
function Hsv2Rgb(byval H as smallint, byval S as smallint,byval V as smallint,
 R as smallint, G as smallint, B as smallint) as logical

'**************************************
' Input H, S, V, 0-240 *
' Output R, G, B, 0-255 *
' Return False for unacceptable H,S,V *
'**************************************
dim t1, t2, t3, i as smallint
dim ht, hh, ss, vv, f as float
Hsv2Rgb=1
if H<0 or H>240 or S<0 or S>240 or V<0 or V>240 then
 Hsv2Rgb=0
 exit function
end if
if V=0 then
 R=0
 G=0
 B=0
 exit function
end if
if H=1 then H=0 end if
hh=H/240

ss=S/240
vv=V/240
i=int(hh*6)
if S = 0 then
 R = int(VV*255 + 0.5)
 G = R
 B = R
 exit function
end if
f=hh*6 - i
t1 = int(VV * (1 - SS) * 255 + 0.5)
t2 = int(VV * (1 - SS * f) * 255 + 0.5)
t3 = int(VV * (1 - SS * (1 - f)) * 255 + 0.5)
v=int(vv*255 + 0.5)
 do case i
 case 0
 R = V
 G = t3
 B = t1
 case 1
 R = t2
 G = V
 B = t1
 case 2
 R = t1
 G = V
 B = t3
 case 3
 R = t1
 G = t2
 B = V
 case 4
 R = t3
 G = t1
 B = V
 case 5
 R = V
 G = t1
 B = t2
 case else
 Hsv2Rgb=0
 end case

end function
 ‘==

	R,G,B > RGB
	RGB > R,G,B
	
	
	
	
	
	
	
	6-2 R, G, B <> CMYK

	R, G, B <> C, M, Y, K
	6-3 R, G, B <> H, S, V

	http://support.microsoft.com/default.aspx?scid=kb;EN-US;q29240 “HOWTO: Converting Colors Between RGB and HLS (HBS) (Q29240)”, even if not exactly for HSV because it gives in particular the reference to the basic work in this area:
	Foley and Van Dam, "Fundamentals of Interactive Computer Graphics" (c 1982, Addison-Wesley).
	“Chapter 17 describes color spaces and shows their relationships via easy-to-follow diagrams. NB this is a wonderful book, but if you are going to get a copy, I suggest you look for the latest edition.”
	From http://blas.mcmaster.ca/~monger/hsl-rgb.html (not on line April 1st, 2002)

	Computational procedures for RGB<>HSV
	
	
	RGB>HSV

	RGB > HSL
	
	
	
	
	In the example, maxcolor = .83, mincolor=.07
	For the example, L = (.83+.07)/2 = .45

	For the example, L=0.45 so S=(.83-.07)/(.83+.07) = .84
	For the example, R=maxcolor so H = (.07-.07)/(.83-.07) = 0

	HSL < RGB
	
	In the example, temp1 = 2.0*.52 - .899 = .141

		In the example, H=120/360 = .33
		In the example, Rtemp3=.33+.33 = .66, Gtemp3=.33, Btemp3=.33-.33=0
		For the example, R=14, G=90, B=14 Color in video
	
	
	
	7 - MAPBASIC CODE FOR SOME CONVERSION FUNCTIONS

