
 
 
 
 

Selecting objects using their characteristics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Jacques Paris 
 
 

jacques@paris-pc-gis.com 
 
 
 
 
 
 
 
 

September 2001 
 

mailto:jacques@paris-pc-gis.com




 
Table of contents 

 
 
 
 
 
 

1 – BASIC TOOLS 
 
1 – 1  Using the nature of the objects 
1 – 2  Using the geographical definition of the objects 
1 – 3  Using the contents of the objects 
1 – 4  Using the style of the objects 
 
2 – GEOGRAPHIC OPERATORS AND TWO-OBJECTS FUNCTIONS 
 
2 – 1  Operators available  for a selection 
2 – 2  The “second” object 
2 – 3  Two-objects geographic functions 
 
3 – SOME EXAMPLES 
 
3 – 1  How to eliminate the “constant” object from the selection 
3 – 2  How to eliminate selected not-really-intersecting regions 
3 – 3  How to select all “red” objects in a mixed table 
3 – 4  How to select all “paths” getting closer than a given distance from an 

object. 



 



 

1 

This document explores ways to use objects own characteristics in selections. “Own 
characteristics” exclude tabular data and limit this search to the nature of the objects, 
their geographical definitions, their contents and their styles. It is not intended to be a 
guide to SQL expression writing but to show how these special features of a GIS 
program can be used in a “where” expression.  
 
After identifying the tools useful for extracting these characteristics, we will look into the 
operators and functions that can handle relative geographic relationships, and close with 
some examples of implementation. 
 
 

MapInfo does not allow comparing two objects directly and globally; an 
expression in a selection like “Object1=Object2” will not be accepted. 
Comparisons can only be made on specific elements of their definition. A 
possible difference between two objects can be more easily proven than a 
perfect identity.  For details on that subject, see the “Identity.doc” document 
distributed with the SkimAll application (PPCC site, Services and Products). 
 
 
As the MI requesters share the same working space as the MapBasic window, 
the variables defined in the MBWindow are directly available to the requesters. 
All the “where” conditions presented in this document can be used indifferently in 
the SQL requester or as part of full Select statement in the MBWindow. 
 
 

1 - Basic tools 
 
1 – 1  Using the nature of the objects 
 
We are dealing here essentially with object types that are limited. The following list gives 
the exact spelling of the names and their numerical code: 
 

Arc 1 
Ellipse 2 
Line 3 
Polyline 4 
Point 5 
Frame 6 
Region 7 
Rectangle 8 
Rounded Rectangle 9 
Text 10

 
From the MapBasic window or from a MI requester, object type can be determined in 
two different ways: by calling the ObjectInfo() function or by querying obj directly. In both 
cases, a comparison between a function that can take multiple forms (string, smallint, 
logical, float…) or obj that is a “form” in itself and another term (string or smallint) will not 
be accepted without having forced both terms of the comparison to be of the same type. 
The standard way to handle this is to use the Str$() function on the left side and to 
enclose the right part between double quote signs. 



 

2 

 
The general ways to write the alternative equalities are 
 

Str$(ObjectInfo(obj,1))=”2” 
or 

Str$(obj)=”Rounded Rectangle” 
 
 

1 – 2  Using the geographical definition of the objects 
 
Geographical definition includes information of different nature.  They include data on 
the structure of the object 

- number of sections of a polyline or of polygons in a region. Using the formula 
Str$(ObjectInfo(obj,21))>”1” 

will select all multiple sections/polygons objects 
 

- number of nodes in a polyline or in an object. If we use 
Str$(ObjectInfo(obj,20))<”200” 

we will get all the objects (polylines and polygons) with less than 200 nodes 
 
on its overall size  

- length of a linear object 
ObjectLen(obj, ”m”)>1000 

selects all the linear objects with a length over 1000 meters. 
 

- length of the border of a closed object 
Perimeter(obj, ”km”)<1000 

picks up all regions with perimeters inferior to 1000 km. 
 

- area of a closed object 
Area(obj, ”sq mi”)>0 

is a way to select all closed objects 
 
on its absolute position by the coordinates of 

- a point object 
ObjectGeography(obj,1)>484000 and ObjectGeography(obj,1)<486000 

selects all points with longitude between 484000 and 486000 in the coordinate system of 
the table if its is the one that is in use (Set Coordsys Table … before Select…) 

 
- the centroid of any type of object 

CentroidX(obj)>484000 and CentroidY(obj)<4735000 
chooses all the points in the lower right quarter from 484000, 4735000. See note above 

about coordinates. 
 

- the beginning and ending nodes of a line 
XBeg: ObjectGeography(obj,1)  Ybeg: ObjectGeography(obj,2) 
Xend: ObjectGeography(obj,3)  Yend: ObjectGeography(obj,4) 

 
- the opposite corners of the MBR of any object 

Xmini: ObjectGeography(obj,1)  Ymini: ObjectGeography(obj,2) 
Xmaxi: ObjectGeography(obj,3)  YMaxi: ObjectGeography(obj,4) 

 



 

3 

1 – 3  Using the contents of the objects 
 
The only type of objects that has some real contents is Text, and its contents are the text 
string itself. Selection can be made with 
 

Str$(ObjectInfo(obj,3))=”Any text” 
 
 

1 – 4  Using the style of the objects 
 
Global style clause 
 
The values returned by ObjectInfo() for style parameters are in the form of a style 
clause, such as “Pen(1,2,0)”. If the selection is made on a complete style, the second 
part of the expression must be also a complete style definition. To achieve this 
requirement, the reference can be a string variable or a style variable. One must make 
also sure that both sides of the expression are of the same type. 
 
String variable in Mapasic window 
 Dim String_Var as string 
 String_Var=”Pen(1,3,0)” 
    Selection “where” 
 Str$(ObjectInfo(obj,2))=String_Var 
 
Style variable in MapBasic window 
 Dim Style_Var as pen 
 Style_Var=MakePen(1,3,0) 
    Selection “where” 
 Str$(ObjectInfo(obj,2))=Str$(Style_Var) 

 
Note: the string or the style variable can be “filled” in different ways, such as 

St…_Var=currentpen() 
St…_Var=objectinfo(selection.obj,2)  

 
Single style element 
 
Several single style elements can be used independently. We have to deal with the fact 
that the value of the argument of the function used to extract a style element may be 
different for the various types of styles. Let us recap first those parameters: 
 

 Brush Pen Font Symbol
Pattern 1 2   
Pointsize   3 3 
Color  4  2 
   forecolor 2  4  
   backcolor 3  5  
Font name   1  
   … style   2  
Pen width  1   
   … interleaved  6   
   … index  5   



 

4 

Symbol kind    7 
   … code    1 
   … font_name    5 
   … font_style    6 
   … angle    4 
   … custom_name    8 
   … custom_style    9 

Single element selections must thus be made on sets of objects of the same type to 
avoid any possible confusion. It is not possible for example to select in one operation all 
the “red” objects in a table containing several types. 
 

StyleAttr(objectinfo(obj,2),4)<> StyleAttr (currentpen(),4) 
 
will pick up all the lines/plines with a color different from the current pen definition. If 
mixed types are present, it will select text objects with a different front color, will deal 
with regions on the basis of their border style (no value 4 for brush, but acceptable value 
for pen), mis-treat symbols by using their angle (value 4) not their color (value 2). To 
avoid any confusion, these expressions should be used in conjunction with a selection 
by object type. Selecting only lines and plines (no arcs) with a color different from the 
current pen would require the following expression: 
 

(Str$(ObjectInfo(obj,1)=”3” or ObjectInfo(obj1,)=”4”) and  
StyleAttr (objectinfo(obj,2),4)<> StyleAttr (currentpen(),4) 

 
As the StyleAttr() function requires for input a style clause, the possibility of using directly 
a string variable that existed in the global style situation is not available in the single 
style element conditions. If the selection is done on the basis of a single value obtained 
from a given object, it is still possible to use the Mapbasic window to set up the proper 
variable. (Selection of regions with brush color the same as the selected object) 
 
MapBasic window commands 

Dim O as object 
O = selection.obj 

Dim I_color as integer 
I_color=StyleAttr(O,2) 

Select “where” 
StyleAttr(objectinfo(obj,2),2)=I_color 

 
Note: the I_Color definition could be avoided by replacing the right part of the 
expression by StyleAttr(O,2). The choice is left to the user who must take into 
consideration the extra time required for processing that more complex 
expression; with the latest machines and with smallish tables, that impact may be 
negligeable. 

 
 
 
 



 

5 

2 – Geographic operators and two-objects functions 
 
2 – 1  Operators available  for a selection 
 
These are the standard MI operators that take into account the relative geographic 
definitions of the objects. There are 3 families, Contains (Contains, Contains Part, 
Contains Entire), Within (Within, Partly Within, Entirely Within) and Intersects. 
 
I will not elaborate on MI description and example of those key words. I will simply insist 
on some points. 
 
From the basic definition of these operators, it is obvious that they cannot be applied to 
every kind of objects without limitations. Let us summarize the kind of operators logically 
useable in the general expression “obj oper objectA” (the second one being the 
reference) and which objects are selected. 
 
Only situations that were found as producing a non-empty selection are detailed in the 
following table; we have found no way to fill a selection if the reference is a text object. 
 
 Reference object 
Map object Symbol Linear object Closed object 
Symbol I 

All symbols 
at same 
location  

(*1) C Part, W (*3), I 
All symbols located within ref.  

Text I 
All texts 
with MBR 
containing 
ref.  

I 
All texts with MBR bisected 
by ref.  

C Part, Partly W, I 
All texts with MBR bisected by ref. 
W 
All texts with MBR centroid within 
ref.  
Entirely W 
All texts entirely within ref.  

Linear 
object 

(*1) I 
All objects bisected by ref.  

C Part, Partly W, I 
All objects bisected by ref.  
W 
All objects with centroid within ref. 
Entirely W 
All objects entirely within ref. 

Closed 
object 

C (*2), I  
All objects 
containing 
the point  
 

C Part, Partly W, I 
All objects bisected by ref.  
C 
All objects containing the 
centroid of ref. 
C Entire 
All objects containing entirely 
ref. 
 

C 
All objects containing the centroid 
of ref.  
C Entire 
All objects containing entirely ref,  
C Part 
All objects that bisect ref.  
W 
All objects with centroid within ref. 
Entirely W 
All objects entirely within ref. 
Partly W, I 
All objects bisected by ref.  



 

6 

 
(*1) It may be possible that if the centroid of line/pline would be exactly centered on the 

reference point, some selection be possible. This eventuality has not been tested. 
(*2) Variants (Contains Part, Contains Entire) are irrelevant but would have the same results 
(*3) Variants (Partly Within, Entirely Within) are irrelevant but would have the same results 
 

Note 1: an object that is entirely within another one is considered also to be 
bisected by it. E.g.,  “All texts with MBR bisected by ref.” includes also all texts 
entirely within ref. 
 
Note 2: two objects that have a single node in common are “partly within/contains 
part” and are considered as intersecting each other. 
 
Note 3: Contains and Within are relative misnomers because in order for A to 
contain B, it suffices that the centroid of B be within A.  Conversely A is within B if 
the centroid of A is within B. 

 
 
2 – 2  The “second” object 
 
One object in a comparison is the “column” obj, and we know that it cannot be it for the 
second one. We have seen that it must be defined outside the command containing 
such expressions. We will use the MapBasic window to define it. For example, one way 
of doing it is to select the object then do the following 
 
MapBasic window commands 

Dim O as object 
O = selection.obj 

Select “where” 
Obj entirely within O 

 
Select all the objects entirely within O, including O itself if it is in the table on which the 
selection is applied. Selected objects may have common node(s) with O, but they have 
no node outside O. 
 
 
2 – 3  Two-objects geographic functions 
 
There are several functions that require two objects as argument and return some 
information concerning their relative geographical structures. For example: 
 

We have designated the objects O1 and O2; these names must be replaced by 
obj and O in the appropriate order as it applies. 

 
 
Function Return value Typical use in selection 
AreaOverlap(O1,O2) Surface of the common 

area to both objects in 
current area units 

Regions overlapping by a set amount 

ProportionOverlap(O1,O2) Proportion of area of 
overlap (O1,O2) relative to 

Regions overlapping by a set 
proportion of O1. 



 

7 

area of O1 
OverlayNodes(O1,O2) Object with all the nodes 

of O1 plus nodes where 
O2 intersects O1 

Used in conjunction with 
ObjectInfo(obj,20) to detect change in 
the number of nodes. 

Combine(O1,O2) Object as the union of O1 
and O2 

Used in conjunction with some other 
function (area, length..) to compare to 
set values, or with ObjectInfo(obj,21) to 
find if objects merged or remained 
separate sections/polygons. 

Erase(O1,O2) Object left when O1 is 
erased by O2 

Used in conjunction with other 
functions such as area()  

Overlap(O1,O2) Object as the intersection 
of O1 and O2 

Used in conjunction with other 
functions such as area() 

Buffer(O,resol,width,”unit”) Object as the buffer of O Used in “proximity” selection with 
geographic operators 

 
 
“Used in conjunction with …” means that the expression is made with embedded 
functions;  
 

ObjectInfo(OverlayNodes(obj,O),21) – Objectinfo(obj,21)>1 
 
selects the objects that intersect O at more than one place outside existing nodes 
 

obj Intersects O and Area(erase(obj,O),”sq km”)>50” 
 
will select the regions that intersects O but that have at least 50 sq km outside O.  
 
 
The relationships between Combine(), Overlap() and Erase() are best described by this 
diagram: 
 

 
 
 
 
 



 

8 

3 – Some examples 
 
3 – 1  How to eliminate the “constant” object from the selection 
 
If the object serving of reference is in the table on which the selection is applied, (e.g. by 
using in the MapBasic window O=selection.obj and making that variable the right side of 
the expression), it is included in the selection, and be sometimes the only selection. If we 
do not want it, then we must add an extra condition to exclude it. We can do that if we 
know the rowid of that object by adding to the where condition “ and 
rowid<>row_of_object”. 
 
The MB script would thus be: 

Dim O as object 
Dim i_row as integer 

O = selection.obj 
i_row=commandinfo(2) 

and the where expression: 
Obj intersects O and rowid<>i_row 

 
That condition creates a selection of all the objects intersecting O, excluding O itself 
 
 
3 – 2  How to eliminate selected not-really-intersecting regions 
 
If we do not want to include in a selection obtained by a “Contains Part”, “Partially 
Within” or “Intersects” operator those regions that touches to the reference objects but 
do not really overlap it, we can add to the “where” expression and extra condition that 
will check for eventual false overlaps. We can use the AreaOverlap() function for that.  
 
Remember also that if object A is totally within object B, it is considered as intersected 
by B. Excluding “internal” objects would require an extra condition such as “and not obj 
entirely within O” and to be complete for sake of symmetry “and not obj contains entire 
O”. The following statement will only select those regions that overlap in part the 
reference object or are overlapped in part by it. 
 

Obj intersects O and rowid<>i_row and AreaOverlap(obj,O)>0  
and not obj entirely within O and not obj contains entire O 

 
 
3 – 3  How to select all “red” objects in a mixed table 
 
One must take into consideration that the color is defined in different “clauses” obtained 
differently for different types of objects and that color must be extracted with a special 
function from those clauses. To cover all eventualities, the where expression should 
contain all the following parts  
 

Note 1 - We use “r_col” (integer) to ferry the “red” color rather that the rgb value 
for red to get a more general expression 
 

Dim r_col as integer 



 

9 

r_col=255 
 

Note 2 – Some objects have more than one color: regions have two, fill and 
border, sometimes 3 when the pattern has fore and back color; text may have 
two in some cases with fore and back color. We will use only the forecolor for 
regions and texts. If the others were required, extra parts should be added to the 
expression.  
 
Note 3 – We have not included “Frame” because it is not found in a map. 

 
where expression 

Str$(obj)=”Arc” and StryleAttr(ObjectInfo(obj,2) or 
Str$(obj)=”Ellipse” and StryleAttr(ObjectInfo(obj,3) or 
Str$(obj)=”Line” and StryleAttr(ObjectInfo(obj,2) or 

Str$(obj)=”Polyline” and StryleAttr(ObjectInfo(obj,2) or 
Str$(obj)=”Point” and StryleAttr(ObjectInfo(obj,2) or 

Str$(obj)=”Region” and StryleAttr(ObjectInfo(obj,3) or 
Str$(obj)=”Rectangle” and StryleAttr(ObjectInfo(obj,3) or 

Str$(obj)=”Rounded Rectangle” and StryleAttr(ObjectInfo(obj,3) or 
Str$(obj)=”Text” and StryleAttr(ObjectInfo(obj,4) 

= r_col 
 
 
3 – 4  How to select all “paths” getting closer than a given 
distance from an object. 
 
The “paths” are continuous polylines stored in table “paths”. The object is a region made 
into the variable object O from another table. We want to know all the paths that do not 
intersect the object but are getting closer than a given distance DistMini expressed in 
“distance units” 
 
The “do not intersect” is translated by the negation of an intersection and the betting 
closer by an intersection with the region inflated (bufferd) by DistMini 
 

not obj intersects O and obj intersects Buffer(O,20, DistMini, “distance unit”) 
 


	Selecting objects using their characteristics
	
	
	Jacques Paris
	September 2001


	1 - Basic tools
	1 – 1  Using the nature of the objects
	1 – 2  Using the geographical definition of the objects
	1 – 3  Using the contents of the objects
	1 – 4  Using the style of the objects
	Global style clause
	Single style element

	2 – Geographic operators and two-objects functions
	2 – 1  Operators available  for a selection
	2 – 2  The “second” object
	2 – 3  Two-objects geographic functions
	3 – Some examples
	3 – 1  How to eliminate the “constant” object from the selection
	3 – 2  How to eliminate selected not-really-intersecting regions
	3 – 3  How to select all “red” objects in a mixed table
	3 – 4  How to select all “paths” getting closer than a given distance from an object.


