
The

Alter MapInfoDialog

Statement

Documentation assembled by

Jacques Paris

with the contribution of

Lars I. Nielsen

May 2006

The “Alter MapInfoDialog” statement

The “Alter MapInfoDialog” statement that exists in MapBasic since 3.0, the first MI
version for Windows “disables, hides or assign new values to controls in MapInfo’s
standard dialog boxes” (MapBasic Reference Guide, v6.5 p 37).

Follows a double warning that changes in MI versions may imply changes in those
standard dialogs (dialog ID, contents and controls ID) and that different Windows
versions may have an impact on “Common Dialogs” based Windows resources.

The syntax of this statement is double, to set new settings:

Alter MapInfoDialog dialog_ID
Control control_ID

{ Disable | Hide | Value new_value } [, { Disable... }]
 [Control...]

and to restore default settings:

Alter MapInfoDialog dialog_ID Default

This little talked about MB statement hides many little treasures but requires some
investment in the identification of the vital dialog_ID and control_ID data, some
knowledge about rules and constraints governing its use and some ideas of potential
application areas.

The purpose of this document is three-pronged; it provides means to identify the
specific IDs for a given MI version and even for any of its regionalized sister-
versions; it reviews the rules and shows what can be done with this statement; it
identifies general areas of potential application and outlines solutions to some real
life situations.

NOTE: some dialogs that are used in normal MI operations do not seem to be
“standard” dialogs; they do no exist in MIRES… and thus cannot be accessed with the
Alter statement. They are open by direct menu actions but their item ID do not work
in a Run Menu Command from the MBW. This is the case, for example, of all the
Graph Formatting menu commands (MI 7.0).

What is available and how to fetch it.

The alter MapInfoDialog statements requires knowing the ID of a dialog and those
of its controls. As you have MapInfo, you can easily obtain the ID of an open dialog;

you just have to start MapInfo with “-helpdiag” in the command string1. When a
dialog is open, clicking on the dialog “Help” button opens a small requester such as
the shown in the following image.

The ID for the “Close Table” dialog is 2520

To identify the controls ID, one must then use some generally free software such as
WinId (disadvantage of displaying all values in hexa) or Windose. But both these
programs cannot provide the MI dialog IDs (hence the use of MI as a first step) and
they, as well as MapInfo with “-helpdiag”, will work only on OPEN dialogs.

I recommend rather using a little marvel: Resource Hacker2 that reads all the
resources in a dll and reveal ID for dialogs and controls. It can also produce RC files
(code for generating resources) that Lars I. Nielsen uses for rebuilding dialogs with
all the necessary IDs (see Lars’ output in separate MIproXXX_en_dialogs.zip files).

RH displays the code for building the dialog and the
dialog itself. We can see here the “Close Table”
dialog (ID 2520, in the list of resources to the left
and in the title bar under the black arrow). The
correspondence between code and graphic is very

1 A word of warning: with the specific setup MI7.0 + Windows XP (my desktop), MI hangs at closing
time (program not responding, requiring using task manager) but with MI6.5 and Windows 2000 (my
laptop) there is no problem. Do not be surprised if you get the same problem.
2 Resource Hacher is a free (for non-commercial use) software that can be downloaded from
http://rpi.net.au/~ajohnson/resourcehacker

http://rpi.net.au/~ajohnson/resourcehacker

clear: the line with a red star corresponds to the
control outlined in blue. In that line after the title
(“Close”) can be found the control ID (1, framed). A
value of ‘-1’ (as in the first line) simply means that
no ID was assigned to that control.

There is a limit to what Resource Hacker and Lars’s rebuilt dialogs can do; they
work only for the MI standard dialogs listed in MIRESxxx.dll3 and cannot find
Common windows-based dialogs. These are not stored as real dialogs; they are
created within MI from common resources (such as ComDlg32.dll) and modified by
the equivalent of the “Alter MapInfoDialog” statement and/or using some partial
overlays. I have identified some of these Common Dialogs that are presented in a
separate document.

Re-settable settings

All accessible controls (= controls with an ID) can be reset by the keywords Hide
and Disable; thus, controls that are registered in an MI dialog as hidden or disabled
cannot be revealed or activated as the keywords Show and Enable are not
recognized by the statement.

All controls can also be reset with a new_value but the nature of that parameter is
different for the various types of control.

Control
type

Setting Variable Details

Button
OKButton
CancelButton

title string If the string is longer than the button width, it is
chopped at both ends as it is centre aligned

Statictext title string If the string is longer than the button width, it is
chopped at the right end as it is left aligned

Editbox value string

Listbox value integer Selects by its position the item of the list that should
be displayed (selected)
The list of items cannot be changed
The items of some listboxes may include checkboxes
(like in the toolpad options dlg). These checkboxes
cannot be modified.

3 Resource Hacker and Lars’ tools can certainly work on different dlls, such the ComDlg32, but their
dialogs are not used as such by MI, and the information thus gained would essentially documentary
and not much operational.

Multilistbox value integer Selects by its position the first item of the list that
should be displayed (selected)
The list of items cannot be changed and only one
Item of the list can be selected

PopupMenu value integer Selects by its position the item of the list that should
be displayed
The list of items cannot be changed

Checkbox value 0 or 1 0 clears the box, 1 checks it

Radiogroup A radiogroup is coded by as many separate controls as
there are options in the radiogroup.
1 as new_value in a control selects it. Only one control
can be thus selected; more specifications will not be
considered and may even prevent any change.

“Style”
Picker

value Return
value
of a
Make…
function

Symbol, Pen, Brush, Font or Pen&Brush (region style)
can be given new values such as those produced by
the appropriate Make…() function.

Groupbox Purely cosmetic; no interest for this paper

General areas of potential use

It could be useful to recap here how the statement works. When it is run with its
new values, the dialog is altered but remains hidden. To reveal it, one must reach
the point where a menu item (or possibly a sequence of dialogs) will display it, or
one can use the “run menu command” with the appropriate code. If the dialog
contains only pre-fixed parameters (options), it does not have to be displayed to be
“effective”. It is only when new data is entered to be processed that the dialog must
be displayed because processing will take place only when the OK button is
activated. Because of that constraint, the “alter Midlg” statement cannot be used in
an automated loop; it will always require user’s intervention.

Three general headings cover the range of potential uses:

- setting general parameters i.e. controlling the global MI environment,
o An example are the preferences that can be set by the sub-items of

that menu (printer, startup,…) and cannot be accessed with the
MapBasic language

- setting local parameters i.e. modifying the specific work environment,
o options for specific operating environment, such as the various “new”

windows (Map, Browser, Layout,…) when created. MapBasic statements

of the “set …” family can modify those windows only after they are
created.

- data entry for processing i.e. introducing some “variable” data
o some dialogs include data entry controls (edittext) that accept

“variable” data that will be used to perform the “operation”, as with the
“find” dialog where an address can be input to be “found” on the map
or any object info from an editable layer (coordinates, style). There are
generally MapBasic statements to take care of these operations.

Examples of implementation

1 - Setting Map Window Preferences (general parameters)

These parameters preside at
the creation of each new
mapper window. They cannot
be modified “globally” by MB
statements even if some may
be adjusted for a specific
(open) mapper window as
part of the map Options (see
the “Set map” statement)..

We find in this dialog (apart
from the classic Ok, Cancel
and Help buttons, 1, 2 &19)

- two buttons (6, 7)
calling the same dialog
(1870, Choose
Projection)

- 2 blocks of 3 (16, 17,
18) and 7 (14, 15, …)
checkboxes

- 3 radiogroups with 2
choices and 2 with 3

- an editbox (13) to enter
the number of pixels

- one popup menu (91)

Our choices are to preserve current scale (5), to use Cartesian calculations (25),
not to autoscroll (38) and to have a snap tolerance of 5 pixels. The alter
statement will look like

Alter MapInfoDialog 4130 control 5 value 1 control 25 value 1
control 38 value 0 control 13 value 5

2 - Setting the layout window (local parameters)

We have first to find the nature of the existing controls.

- 7, 8 and 17 are checkboxes
- 6, 5, and 4 form one radiogroup (as there are as many controls ID as

‘buttons’, these will require special handling)
- 9 and 11 are edittext boxes
- 10, 12, 13, 14 and 1553 are statictext and of no interest for our purpose
- 1, 2 and 16 buttons

All these types of control can be hidden
(keyword Hide) or disabled (keyword
Disable) but once these keywords have
been used for a control, the only way to
return it to its original state is to reset the
entire dialog to “default”; the Alter
statement does not recognize the Show or
Enable keywords.

My personal options:

I want to see the rulers (7) but not the
page breaks (8); I want the contents to
always show (6) and a layout size de 2*2
pages (9, 11). I want to make sure there is
no autoscroll (17) and I do not want to see
Help (16)

Alter MapInfoDialog 1550 control 7 value 1 control 8 value 0
control 6 value 1 control 9 value “2”
control 11 value “2” control 17 value 0
control 16 Hide

3 - Processing data

MI gives a very simple example in the MB User’s Guide (v6.5), finding an address.
The dialog ID 2202 is an example of several

situations one finds in a dialog that does not look always as the stored (and
displayed here) version: the “boundary” + editbox ID 7 appear only if a boundary
table has been selected for refining the search, and the control ID 16 is never to be
seen

What we are interested in is the editbox to
enter the “address” ID 5. To enter a new
one, then we execute

Alter MapInfoDialog 2202 control 5 value
“new_addr”

That in itself in not enough; the dialog has
been modified but for the search to take
place, it must be “run”, hence a new step

Run menu command M_ANALYZE_FIND
Or

Run menu command 305

That command will open the dialog but to
run it, one must activate the OK button.

What could be the advantage of such a
technique over entering data directly into the editbox? It has to do with the
automation of a find process. We can easily imagine that we have a list of addresses
in some file or table. We can easily write a small MB code to read one address at
the time into a string variable and use that variable as the new “value”. Then in the
same loop, alter the dialog and run it.

For each new address that solution requires the intervention of the user and that
total supervision of the coding is the strong point and only justification of that
technique. As we are writing code, we could use instead the Find statement with its
Interactive keyword. However with this statement, the dialog would appear only if
user’s intervention is required to clear a doubt, i.e. when a choice must be made
between possible solutions. That small difference may be judged important enough
to promote the “alter MIdlg“ solution.

As a perceived safeguard, MI proposes also to hide the Respecify button (ID 12) to
limit the risks that the user would change the search definition (table, column) and
modify thus the chances to find the addresses.

Alter MapInfoDialog 2202 control 12 Hide

If we consider working in loop, that statement must be run once before the loop
beginning, the button reappearing only after an “Alter MapInfoDialog 2202 default”
is executed (e.g. after loop has ended).

