

MCL_INI DEVELOPPER’S KIT

Making MapInfo tools Multi Lingually Compatible with the MLC_INI1 solution

Documentation and resources for the MapBasic programmer

Jacques Paris, July 2000

jakesp@total.net

1 The Multi-Lingual Compatibility Project is an initiative of Jacques PARIS (jakesp@total.net). The INI SOLUTION is the
brain child of Bill THOEN (bthoen@ctmap.com); it was implemented will the help of Mats Elfström
(mats.elfstrom@telia.com) and Carlos Montalvillo Gómez (Carlos.Montalvillo@sgsmap.com)

The MlcInKit.zip file contains a variety of documents and examples.
They include in particular the resource libraries that are required to
compile and link a project that respects the MLC standard solution,
documented examples and this document.

MLC_INI libraries

mlc_ini.def defines the sub/functions of the mlc_ini.mb library
mlc_ini.mb contains the sub/functions corresponding to calls

made in the application and handle all “language”
related functions

profile.def defines the API related functions to read/write the ini
file.

profile.mb necessary in its MBO form for the linking the project

These files should be placed in a “central” directory in order to keep
a unique copy of them; calls to these files should include the
complete path to this directory.

PROJECT FILE

Every application requires a project file (application.mbp) in order to
link the resources libraries to the main application module (and the
application modules together if they exist) should read as follows:

[LINK]
application=application.mbx application mbx name
module=application.mbo application main module
module= MLC_INI.mbo language choice, text “extractor”

sub/functions
module=profile.mbo Windows API Profile sub/functions

PROGRAMMING ELEMENTS

1 – Include statement(s)

note: specify the complete path to these files if they do not
reside in the directory in which the application is developed

Always required
include "mlc_ini.def"

Required only if direct calls to the profile sub/functions (ini_GetIni,
ini_WriteINI) are made

include "profile.def"

2 – Declare statements

Minimal set of statements

(Goodbye and About under any other form are recommen-
ded, not required)

declare sub main
declare sub MenuSetup
declare sub option_lang
declare sub goodbye
declare sub about
declare Sub BuildLanguage (byval sProfile

as string)

3 – Language initialization

This sub detects if an ini file exists; if not, it will create one with the
BuildLanguage() subroutine.

It registers the language to use (the original language if a new ini is
created or the previously selected one if an ini file exists) and calls
for setting the menu

If other parameters are kept in the ini file, it is also the place to read
in their values, using the ini_GetIni() function.

dim fileini as string
'==

sub main

fileini=Applicationdirectory$()+
"APPLICATION.ini"

if not FileExists (fileini) then
call BuildLanguage (fileini)

end if
call mlc_InitLanguage (fileini)
call MenuSetup

end sub

4 – Menu creation

In this document, message numbers are written as space fillers
only. Installing the menu in the Tool Menu (ID 4) prevents the
cluttering of the main menu bar by the menus of all the loaded
applications. That option is available only with versions starting with
4.5.

This sub should also contain the definitions of shortcut menus, the
modifications to toolbars (addition of icons) and the creation of new
tool pads, if any is needed.

sub MenuSetup

Create Menu msg(8) as
msg(14) calling option_lang,
msg(15) calling options,
"(-",
msg(9) Calling About,
msg(10) Calling Goodbye

if systeminfo(3)<450 then
Alter Menu Bar Add msg(8)

 else
Alter Menu ID 4 Add msg(8) As msg(8)

end if
end sub

5 – Change of language

The mlc_SetLanguageDlg()function allows choosing among the
languages present in the ini file.

If any other menus or pads are implied in the change of languages,
they should be dealt with in this subroutine. Item menus can be
simply removed, button pads must be “destroyed”

sub option_lang

dim sPrevMenu,a as string

sPrevMenu = msg(8)
if mlc_SetLanguageDlg () then

if systeminfo(3)<450 then
 Alter menu bar remove sPrevMenu
 else

a="Alter menu ID 4 remove
"""+sprevmenu+""""

 run command a
end if
call MenuSetup

end if
end sub

6 – Writing the strings

The strings corresponding to the text markers (calls to the msg(nn)
function) are stored in a special subroutine that must respect the
structure and the contents described below.

The size of the array must be adjusted to the exact number of
strings.

The call to mlc_PrimeLanguage() registers the “original”
language strings in the ini file. Adjust “English” to the appropriate
name if different.

Sub BuildLanguage(byval sProfile as string)
dim sMsg(23) as string

sMsg(1) = "\nDirect Access to Preferences"
sMsg(2) = "\nSystem Settings"
sMsg(3) = "\nMap Window"
...
sMsg(22) = "Effective only at the next

loading"
sMsg(23) = "of the application"

call mlc_PrimeLanguage ("English", sMsg,

sProfile)
End Sub

7 – Direct calls to the ini_ sub/functions: using the ini file
for application parameters

The developer will have to make direct calls to the Profile
functions necessary to write in or read out a string in this ini file
only if more parameters must be maintained in the ini file. The
Profile.def file must be “included” in the MB of the application (see
1-). These functions have the following syntax:

subroutine call ini_WriteIni (Group, Keyname, Value, Profile)
and

function Value = ini_GetIni (Group, Keyname, Default,
Profile)

Profile is the ‘name’ (string) of the ini file
Value a string that represents the string after an '=' in the

ini file.
Group the text wrapped in square brackets

(e.g. Language1)
Keyname the identifier before the '=' (e.g. msg7).

for ini_GetIni() only
Default is the value returned if the Keyname in Group is not

found. The provided MB libraries use “?”

Note also that these Profile functions will work in either 16-bit or 32-
bit Windows.

An example of their use is provided in the PREFER demo
application.

8 – Original Language other than English

It the developer wants to use a language other than English as the
original language of the “strings”, he must translate the three
strings [sMsg(1) to sMsg(3)] of the mlc_BuildLanguage()
subroutine in the mcl_ini.mb library to this language

sub mlc_BuildLanguage (byval sProfile as string)

dim sMsg(3) as string
dim i as smallint
sMsg(1) = "Language option"
sMsg(2) = "Your choice will become active when
you close this dialog"
sMsg(3) = "OK"
for i = 1 to UBound(sMsg)

call ini_WriteIni ("MLC1", "msg"+Str$(i),

sMsg(i), sProfile)
next
end sub

9 – Recommendations for designing dialogs

As the translation of a string into another language results almost
systematically in a string of different length, it becomes difficult to
layout dialog boxes in a way they are perfect in all circumstances.
To a visually pleasing layout, to a compact single frame dialog, the
developer should prefer safe layouts and multiple sequential
dialogs.

Exploding a dialog in several frames is probably easy to
understand and implement. Safety in dialogs is harder to imagine; it
means that the essential elements of a dialog should not be altered
by strings of uncontrollable lengths or that text strings should not be
constrained by fixed elements. Here are some basic ideas:

- it is preferable for an EditText box (or any fixed width control) to
be placed on the same line before a StaticText rather than after

- do not specify width, particularly for a dialog; it will allow automatic
adjustment to any string length without truncation

- use left alignment only; forget about any centering or right
alignment.

- specify the position of any element only if it must be given;

- height and varying lengths are generally not related excepted in
the case a multiple line StaticText: the translated string length may
have more lines than the original. It would be better to use several
single line StaticText boxes to avoid this problem.

WARNING:

Each time the application is run, a new INI file is created. If
changes are made to the text strings, they will be “activated” only if
the existing INI is deleted before running the program.

MAIN APPLICATION MODULE :
 an example PREFER.MB

The main application module must contain some specific calls
and must handle some situations in a specific way. The following
documented example shows the key elements.

Most generic information is detailed in “Programming elements”.
Comments included in this listing relates mainly to the PREFER
application.

 required
include "mlc_ini.def"

the profile.def is required in this application because of the
direct calls to the Profile library for storing/retrieving
parameters in the ini file

include "profile.def"
 general sub structure
declare sub main
declare sub MenuSetup
declare sub option_lang
declare sub goodbye
declare sub about
declare Sub BuildLanguage (byval sProfile as string)
 Specific subroutine to manage the extra option
declare sub options
 The irow,ipos are the parameters added to the ini file for this
application
dim irow,ipos as smallint

Fileini is a way to simplify the writing of the ini_ calls; useful
particularly when using extra parameters

dim fileini as string

'==
sub main
fileini=Applicationdirectory$()+"PREFER.ini"
if not FileExists (fileini) then
 call BuildLanguage (fileini)

Write extra parameter values (set here at 6)

call ini_WriteIni("General","DockedPadRow","6",
fileini)

call ini_WriteIni("General","DockedPadPos","6",
fileini)

end if
call mlc_InitLanguage (fileini)
call MenuSetup
end sub

'==
sub MenuSetup
dim sCmd as string
 Create initial menu or recreate it with a different language

In this example, the main part of the application is a simple
menu+toolpad. Normally, there would be a menu item that
will launch the operations.

Create Menu msg(8) as
 msg(14) calling option_lang,
 msg(15) calling options,
 "(-",
 msg(9) Calling About,
 msg(10) Calling Goodbye

 if systeminfo(3)<450 then
 Alter Menu Bar Add msg(8)
 else
 Alter Menu ID 4 Add msg(8) As msg(8)
 end if

Get extra parameter values
irow=ini_GetIni("General","DockedPadrow",MSG_DEFAULT,

fileini)
ipos=ini_GetIni("General","DockedPadPos",MSG_DEFAULT,

fileini)
Create buttonpad docked with the irow, ipos parameters. It is
the main purpose of this application.

create buttonpad msg(8) as
pushbutton calling about icon 230 helpmsg msg(1)
pushbutton calling 210 icon 116 HelpMsg msg(2)
pushbutton calling 212 icon 110 HelpMsg msg(3)
pushbutton calling 215 icon 109 HelpMsg msg(4)
pushbutton calling 211 icon 117 HelpMsg msg(5)
pushbutton calling 213 icon 98 HelpMsg msg(6)
pushbutton calling 214 icon 101 HelpMsg msg(7)

fixed toolbarposition (irow,ipos)
end sub

'==
sub option_lang
dim sPrevMenu,a as string
 This subroutine deals only with the language choice
sPrevMenu = msg(8)
if mlc_SetLanguageDlg () then
 if systeminfo(3)<450 then
 Alter menu bar remove sPrevMenu
 else

a="Alter menu ID 4 remove
 """+sprevmenu+""""

 run command a
 end if

The buttonpad is destroyed here. Its definition cannot be
saved as that of a menu. It will be recreated with the new
language by the next call.

 Alter ButtonPad sPrevMenu Destroy
 call MenuSetup
end if
end sub

'==
Sub options

specific subroutine to specify/modify the values of extra
parameters and register the new choice(s) in the ini file

dim jrow,jpos as smallint
dialog title msg(16)
control staticText title msg(17)+str$(irow)

position 10,10
control staticText title msg(18)+str$(ipos)

position 20,20
control staticText title msg(19) position 10,35
control edittext value irow into jrow width 15

position 20,45 height 10
control edittext value ipos into jpos width 15

position 20,58 height 10
control staticText title msg(20) position 45,45
control statictext title msg(21) position 45,58
control statictext title msg(22) position 10,75
control statictext title msg(23) position 10,85

control okbutton
if not commandinfo(1) then exit sub end if
if jrow<>irow then
 call ini_WriteIni("General","DockedPadRow",jrow,

fileini)
 irow=jrow
end if
if jpos<>ipos then
 call ini_WriteIni("General","DockedPadPos",jpos,

fileini)
 ipos=jpos
end if
end sub

'==
Sub About
note
msg(11)+chr$(13)+chr$(13)+msg(12)+chr$(13)+chr$(13)+ms
g(13)
end sub

'==
Sub GoodBye
 End Program
End Sub

'==
Sub BuildLanguage(byval sProfile as string)
dim sMsg(23) as string

All the strings required for the application. The numbering
does not respect the relative place of a string in the listing.

 sMsg(1) = "\nDirect Access to Preferences"
 sMsg(2) = "\nSystem Settings"
 sMsg(3) = "\nMap Window"
 sMsg(4) = "\nLegend Window"
 sMsg(5) = "\nStartUp"
 sMsg(6) = "\nAddress Matching"
 sMsg(7) = "\nDirectories"
 sMsg(8) = "Preference"
 sMsg(9) = "About Preferences"
 sMsg(10) = "Remove Preferences"
 sMsg(11) = "Direct access to the various

Preferences requesters"

 sMsg(12) = "This ultra simple program is a
demonstration of a multi lingual
application using messages from the
ini file"

 sMsg(13) = "Jacques Paris under Mats Elfström's
influence and serious
rework by Bill Thoen, June 2000"

 sMsg(14) = "Language Choice"
 sMsg(15) = "ToolPad Position"
 sMsg(16) = "Position of docked ToolPad"
 sMsg(17) = "ToolPad is now docked on row "
 sMsg(18) = "and in the postion "
 sMsg(19) = "Enter the values you want for"
 sMsg(20) = "row (0 topmost row)"
 sMsg(21) = "position (0 rightmost position)"
 sMsg(22) = "Effective only at the next loading"
 sMsg(23) = "of the application"

call mlc_PrimeLanguage ("English", sMsg, sProfile)
End Sub

