
MAPINFO GRID ENGINE

MapBasic scripts

using

MIGRID.DLL functions

Jacques Paris

September 2001

This document contains 4 MapBasic code listings showing how to
use calls to the MiGrid library. These examples have been in the
largest part extracted from the GridTools.mb listing offered by Andrew
Dressel (MI Corp). I have trimmed the code and made each part an
autonomous program, which explains some redundancies. I have
also added comments where I judged it necessary if it was not yet
included in the original listing.

The main reason for “exploding” GridTools into several parts is
essentially pedagogical; the examples show more clearly than in a
long listing the way to handle the functions; they also have increasing
degrees of complexity and they build in part on each other.

The first two examples demonstrate that a file does not have to be
open as a MI table for the handle and the file info to be retrieved (a
difference with MI that “recognizes” a table only if it is open)

Ex01: the simplest example shows how to get the handle of a grid
file.

Ex02: once a grid file is open, the “geographical” information is
retrieved. That info goes beyond the simple image coordsys and the
extents of the “map”; it covers also the number of cells and the max
and min Z values. The actual size of a cell can be calculated from
those variables.

Ex03: with the “geo” information of the file known, it is simple to
retrieve the actual Z value of any cell. Ex03 gives the Z value at the
position where the user clicked.

Ex04: a grid is first created from some info collected from the user
(number of cells in X and Y, mini and maxi of z values) and some
fixed (but a priori) data (projection, geographical range). A formula
(also a priori) transforms the z range in equal increments based on
the number of cells and assigns a value to each cell; color is applied
ranging from (the last a priori) blue to red.

For comments: jacques@paris-pc-gis.com

Ex01

Demo program showing how to get the handle of a MIG grid file

Declare Function GE_OpenGrid lib "migrid.dll"
 (lpzFilename As string, byval cache as integer, hgrid as integer
) As logical

dim filein as string
dim hGrid as integer
dim lReturn as logical

filein=fileopendlg("","","MIG","Select MI Grid file")
if filein="" then exit sub end if

 lReturn = GE_OpenGrid(filein, 1024, hGrid)
 If Not lReturn Then
 Note "Open " + filein + " failed"
 Exit Sub
 End If
 If hGrid = 0 Then
 Note "Open " + filein + " failed: grid handle = 0"
 Exit Sub
 End If
Print " Opened " + filein + chr$(10) + " with handle " + hGrid

Ex02

Demo program showing how to retrieve all the available "geographic
information" contained in a MIG file

Declare Function GE_OpenGrid lib "migrid.dll"
 (lpzFilename As string, byval cache as integer, hgrid as integer
) As logical

Declare Function GE_GetCoordSysInfo Lib "Migrid.dll"
 (ByVal hGrid As Integer, aCoordSys As String, MinXVal As Float,
 MinYVal As Float, MaxXVal As Float, MaxYVal As Float
) As Logical

Declare Function GE_GetContinuousMinMax Lib "Migrid.dll"
 (ByVal hGrid As Integer, MinZVal As Float,MaxZVal As Float
) As Logical

Declare Function GE_GetDimensions Lib "Migrid.dll"
 (ByVal hGrid As Integer, Width As Integer, Height As Integer
) As Logical

dim filein, aCoordSys as string
dim hGrid as integer
dim lReturn as logical
dim MinXVal, MaxXVal, MinYVal, MaxYVal, MinZVal, MaxZVal as float
dim Width, Height as integer

filein=fileopendlg("","","MIG","Select MI Grid file")
if filein="" then exit sub end if

' open grid with GE_OpenGrid

 lReturn = GE_OpenGrid(filein, 1024, hGrid)
 If Not lReturn Then
 Note "Open " + filein + " failed"
 Exit Sub
 End If
 If hGrid = 0 Then
 Note "Open " + filein + " failed: grid handle = 0"
 Exit Sub
 End If
print "FILE "+filein

' geographical parameters with GE_GetCoordSysInfo
' initialize the string variable to allocate actually memory

 aCoordSys = Space$(255)
 lReturn = GE_GetCoordSysInfo(hGrid, aCoordSys, MinXVal, MinYVal,
 MaxXVal, MaxYVal)
 Print " " + aCoordSys

Print " MinXVal = " + MinXVal + ", MinYVal = " + MinYVal +
 chr$(10)+ " MaxXVal = " + MaxXVal + ", MaxYVal = " + MaxYVal

' Get minimum and maximum grid values with GE_GetContinuousMinMax

 lReturn = GE_GetContinuousMinMax(hGrid, MinZVal, MaxZVal)
 Print " MinZVal = " + MinZVal + ", MaxZVal = " + MaxZVal

' Get grid dimensions (n of rows and columns) with GE_GetDimensions

 lReturn = GE_GetDimensions(hGrid, Width, Height)
 Print " Width (in cells) = " + Width + ", Height = " + Height

Ex03

Demo program showing how to retrieve data from a MIG grid file

include "mapbasic.def"
include "icons.def"

Declare Function GE_OpenGrid lib "migrid.dll"
 (filein As string, byval cache as integer, hgrid as integer
) As logical

Declare Function GE_GetCoordSysInfo lib "migrid.dll"

(ByVal hgrid as integer, clau as string, mix as float, miy as float,
max as float, may as float

) as logical

Declare Function GE_GetContinuousMinMax lib "migrid.dll"
 (ByVal hgrid as integer, zmin as float, zmax as float
) as logical

Declare Function GE_GetDimensions lib "migrid.dll"
 (ByVal hgrid as integer, wid as integer, hei as integer
) as logical

Declare Function GE_GetContinuousValue lib "migrid.dll"
 (ByVal hgrid as integer,ByVal icol as integer,ByVal jrow as integer,
 zval as float, ax as smallint
) as logical

Declare Function GE_GetGridType lib "migrid.dll"
 (ByVal hgrid as integer, gtyp as smallint) as logical

Declare Function GE_StartRead lib "migrid.dll"
 (ByVal hgrid as integer) as logical

Declare Function GE_EndRead lib "migrid.dll"
 (ByVal hgrid as integer) as logical

Declare Function GE_CloseGrid lib "migrid.dll"
 (hgrid as integer) as logical

declare sub main
declare sub GridInfoToolHandler
declare function findlayer as string
declare sub about
declare sub goodbye

dim filein, claus as string
dim typg, puchIsNull as smallint
dim hgrid, widt, heig ,icol,jrow as integer
dim xmin,ymin,xmax,ymax,zmin,zmax, zval as float
dim iret as logical

'======
sub main
'======

' In this program, a menu is useful mainly to terminate the application
' and remove the tool from the ToolPad. Also an opportunity to say
' something about the program

create menu "Read Grid" as
 "About Read Grid" calling about,
 "Remove grid Grid" calling goodbye

alter menu id 4 add "Read Grid" as "Read Grid"

 Alter ButtonPad ID 3
 Add
 Separator
 ToolButton ID 9944
 Calling GridInfoToolHandler
 Icon 46
 Cursor MI_CURSOR_CROSSHAIR
 DrawMode DM_CUSTOM_POINT
 HelpMsg "Retrieve value from grid cell.\nRetrieve grid value"
 Show
end sub

'======
Sub GridInfoToolHandler
'======

 OnError Goto HandleError

 Dim sCmd, val As String
 Dim MapWindowID, lCol, lRow As Integer
 Dim x, y, xx, yy, pdvalue As Float
 Dim i, puchIsNull As SmallInt

' check where click was located and identify the table (=layer)

 If WindowInfo(frontwindow(), WIN_INFO_TYPE) <> WIN_MAPPER Then
 Note "Click in a mapper with a MIG layer."
 Exit Sub
 End If
filein=findlayer()

' retrieve geographic info for the grid

claus=space$(255)
iret=GE_GetCoordSysInfo(hgrid,claus,xmin,ymin,xmax,ymax)
iret=GE_GetDimensions(hgrid,widt,heig)
iret=GE_GetGridType(hgrid,typg)
iret=GE_GetContinuousMinMax(hgrid,zmin,zmax)

' retrieve cursor position and open grid file

 sCmd = "Set " + claus
 Run Command sCmd

 x = CommandInfo(CMD_INFO_X)
 y = CommandInfo(CMD_INFO_Y)
 iret = GE_StartRead(hGrid)
if not iret then
note filein+" with handle "+hgrid+chr$(10)+chr$(10)+"cannot be open
for reading"
exit sub
end if

' convert cursor position in geo coordinates
' and extract corresponding z value

 If iret Then
 lCol = (Widt * (x - XMin) / (XMax - XMin)) + .5
 lRow = (Heig - Heig * (y - YMin) / (yMax - YMin)) + .5
 xx=XMin+(XMax-XMin)/Widt*(lcol-.5)
 yy=Ymax-(YMax-YMin)/Heig*(lrow-.5)
 iret = GE_GetContinuousValue(hGrid, lCol, lRow, pdValue, puchIsNull)

 If lCol < 0 Or lRow < 0 Or lCol >= Widt Or lRow >= Heig Then

' the user clicked in a map but outside the bounds of a mig file

 If pdValue = 0 Then
 val=" is undefined"
 Else
 val=str$(pdvalue)+ " but should be undefined"
 End If
 Else
 If puchIsNull Then

' distinguish between zero values and NULL

 val="NULL."
 Else
 val=str$(pdValue)
 End If
 End If

dialog title "Information on a cell in a MIG file"
 control statictext title "File : " position 10,10
 control statictext title filein position 10,20
 control statictext title "Detected cell position" position 10,35
 control statictext title "Row : "+lrow position 20,45
 control statictext title "Column : "+lcol position 80,45
 control statictext title "Estimated cell centroid coordinates"
position 10,60
 control statictext title "X : "+xx position 20,70
 control statictext title "Y : "+yy position 80,70
 control statictext title "Value : "+val position 45,90
 control okbutton position 50,110

' terminate read of grid

 iret = GE_EndRead(hGrid)
 Else
 Note " StartRead(" + hGrid + ") failed"

 End If

' close grid

 iret = GE_CloseGrid(hGrid)

 Exit Sub

HandleError:
 Note "GridInfoToolHandler: " + Error$()
 Resume Next

end sub

'======
function findlayer as string
'======

dim spath as string
dim i as smallint
dim MapWindowID as integer

MapWindowID=frontwindow()

' find the first layer in the pile that is a GRID file

 For i = 1 To MapperInfo(MapWindowID, MAPPER_INFO_LAYERS)
 If LayerInfo(MapWindowID, i, LAYER_INFO_TYPE) =
 LAYER_INFO_TYPE_GRID Then
 sPath = LayerInfo(MapWindowID, i, LAYER_INFO_PATH)
 Exit For
 End If
 Next

' find if the corresponding file exists

 sPath = Left$(sPath, Len(sPath)-3) + "mig"
 If Not FileExists(sPath) Then
 Note "Cannot find grid file " + sPath
 Exit function
 End If

' get the file handle

 iret = GE_OpenGrid(sPath, 1024, hGrid)

' prepare function result

if not iret then
note "Open failed on file "+spath
goto faux
end if
if hgrid =0 then
note "Handle of ZERO on file "+spath
goto faux
end if

findlayer=spath
exit function

faux:
findlayer=""

end function

'======
sub about
'======

note "Read Grid reads the z value of the cell in whcih the user
clicked. "+
 "Click on 'arrow+?' icon added in the tool bar then the
CrossHair cursor"+chr$(10)+chr$(10)+
 "Demo program part of 'GridEngine calls in MapBasic', J.Paris,
Sept 01"
end sub

'======
sub goodbye
'======

end program
end sub

Ex04

Demo program showing how to create a MIG grid file and write data to it

include "mapbasic.def"

Define ID_EDIT_TEXT_FILENAME 601
Define ID_EDIT_TEXT_ROWS 602
Define ID_EDIT_TEXT_COLS 603
Define ID_EDIT_TEXT_MIN 604
Define ID_EDIT_TEXT_MAX 605

Define GE_GRIDINFO_MAGIC_NUMBER 13124
Define GE_GRIDINFO_INVALID 43690
Define GE_GRIDTYPE_CONTINUOUS 1
Define GE_GRIDTYPE_CLASSIFIED 2
Define GE_MAX_INFLECTIONS 255
Define _MAX_PATH 260 ' max. length of full
pathname
Define GE_COLOR Integer
Define GE_HGRID Integer

Type GE_COLORINFLECTIONS
 sNumInflections As SmallInt
 alignmentfiller(3) As SmallInt
 adValue(GE_MAX_INFLECTIONS) As FLoat
 aColor(GE_MAX_INFLECTIONS) As GE_COLOR
End Type

Type GE_GRID_INFO
 lMagic As Integer
 lWidth As Integer
 lLength As Integer
 ptchCoordSys As String
 dMinXVal As Float
 dMaxXVal As Float
 dMinYVal As Float
 dMaxYVal As Float
End Type

Declare Function GE_GetDefaultWriteHandler Lib "Migrid.dll"
 (ByVal sGridType As SmallInt, ptchHandlerName As String
) As Logical

Declare Function GE_CreateContinuousGrid Lib "Migrid.dll"
 (ptchHandlerName As String, ptchFilename As String,
 pInflections As GE_COLORINFLECTIONS,

ByVal uchIsNullTransparent As SmallInt, clrNull As GE_COLOR,
pGridInfo As GE_GRID_INFO, ByVal dMinVal As Float,
ByVal dMaxVal As FLoat, phGrid As GE_HGRID
) As Logical

Declare Function GE_WriteContinuousValue Lib "Migrid.dll"
 (ByVal hGrid As GE_HGRID, ByVal lCol As Integer,
 ByVal lRow As Integer, ByVal dValue As Float
) As Logical

Declare Function GE_CloseContinuousGrid Lib "Migrid.dll"
 (phGrid As GE_HGRID) As Logical

declare sub main
Declare Function CreateGridDialog() As Logical
Declare Sub BrowseButtonHandler
Declare Sub OKButtonHandler

Global szGridFilename As String
Global iRows, iCols As Integer
Global fMin, fMax As Float

'======
sub main
'======

Dim ret As Logical
Dim atchHandlerName As String
Dim hGrid As GE_HGRID
Dim Inflections As GE_COLORINFLECTIONS
Dim GridInfo As GE_GRID_INFO
Dim clrNull As GE_COLOR
Dim uchIsNullTransparent As SmallInt
Dim r, c, i As Integer
Dim dValue As Float

' get the default grid handler name.
' initialize first the string variable holding the name

atchHandlerName = Space$(_MAX_PATH)
ret = GE_GetDefaultWriteHandler(GE_GRIDTYPE_CONTINUOUS,
atchHandlerName)
print chr$(12)
print "GetDefaultWriteHandler returned with " + atchHandlerName

' call the dialog to input grid parameters

 If Not CreateGridDialog() Then Exit Sub End If

' set the various parameters for the "coloring"
' there will be continuous coloring from BLUE to RED
' the "end points" are counted as inflections.
' to add another intermediate point at green we could have
' inflections.snuminflections =3
' the first point with no change, the previous (2) renamed (3) and
' Inflections.adValue(2) = (fMax - fMin)/2
' Inflections.aColor(2) = RGB(0,255,0)

 Inflections.sNumInflections = 2
 Inflections.adValue(1) = fMin
 Inflections.aColor(1) = RGB(0,0,255)
 Inflections.adValue(2) = fMax
 Inflections.aColor(2) = RGB(255,0,0)

' a simple lon/lat "map will be produced with a one degree span in both

' directions

 GridInfo.lMagic = GE_GRIDINFO_MAGIC_NUMBER
 GridInfo.lWidth = iCols
 GridInfo.lLength = iRows
 GridInfo.ptchCoordSys = "CoordSys Earth Projection 1, 62"
 GridInfo.dMinXVal = 1
 GridInfo.dMaxXVal = 2
 GridInfo.dMinYVal = 1
 GridInfo.dMaxYVal = 2

 clrNull = RGB(0,0,0)
 uchIsNullTransparent = 1 ' 0=opaque, 1=transparent

' if more than 2 inflections, Inflections.adValue(2) >...Value(number
' of inflections) the "frame" of the grid is created but the z values
' are not entered

 ret = GE_CreateContinuousGrid(atchHandlerName, szGridFilename,
Inflections, uchIsNullTransparent,
 clrNull, GridInfo, Inflections.adValue(1), Inflections.adValue(2),
hGrid)

 print " Created Continuous Grid " + szGridFilename

' the z values are calculated as proportions of the defined Z range
' given the order of creation of the value from the upper left to the
' lower right corner. This formula is just a demo of value generation.

 For r=0 To GridInfo.lLength-1
 For c=0 To GridInfo.lWidth-1
 dValue = Inflections.adValue(1) + (Inflections.adValue(2)-
Inflections.adValue(1)) *
 ((r*GridInfo.lWidth+c) / (GridInfo.lLength *
GridInfo.lWidth))
 Print " Row:"+r+" Col:"+c+" Val="+dValue
 ret = GE_WriteContinuousValue(hGrid, c, r, dValue)
 Next
 Next

' closing the grid

 ret = GE_CloseContinuousGrid(hGrid)
 print "Continuous Grid Closed"

'registering the grid as a MI table

 Register Table TrueFileName$(szGridFileName) Type "GRID"
 Open Table Left$(szGridFileName, Len(szGridFileName)-4)
 Map From TableInfo(0, TAB_INFO_NAME)

end sub

'=======
Function CreateGridDialog() As Logical
'=======

Dim sRows, sCols, sMin, sMax As String

' read in the four variables required from the user

sRows = Str$(iRows)
sCols = Str$(iCols)
sMin = Str$(fMin)
sMax = Str$(fMax)

Dialog Title "Create a new grid file"
 Control StaticText Title "Grid File Name:" Position 10, 12
 Control EditText Value szGridFilename Into szGridFilename ID
ID_EDIT_TEXT_FILENAME
 Position 60, 10 Width 200
 Control Button Title "&Browse..." Calling BrowseButtonHandler
Position 270, 10
 Control StaticText Title "Rows:" Position 10, 32
 Control EditText Value sRows Into sRows ID ID_EDIT_TEXT_ROWS
Position 40, 30
 Control StaticText Title "Columns:" Position 10, 47
 Control EditText Value sCols Into sCols ID ID_EDIT_TEXT_COLS
Position 40, 45
 Control StaticText Title "Minimum value:" Position 143, 32
 Control EditText Value sMin Into sMin ID ID_EDIT_TEXT_MIN Position
195, 30
 Control StaticText Title "Maximum value:" Position 143, 47
 Control EditText Value sMax Into sMax ID ID_EDIT_TEXT_MAX Position
195, 45
 Control OKButton Title "&OK" Position 100, 90 Calling
OKButtonHandler
 Control CancelButton Title "&Cancel" Position 150, 90

 If CommandInfo(CMD_INFO_DLG_OK) Then
 iRows = Val(sRows)
 iCols = Val(sCols)
 fMin = Val(sMin)
 fMax = Val(sMax)
 CreateGridDialog = TRUE
 Else
 CreateGridDialog = FALSE
 End If

End Function

'======
Sub BrowseButtonHandler
'======
' retrieve the path of the selected file

 szGridFilename = FileSaveAsDlg(PathToDirectory$(TempFileName$("")),"",
 "MIG", Specify grid file name")
 If szGridFileName <> "" Then
 Alter Control ID_EDIT_TEXT_FILENAME
 Value szGridFileName
 End If

End Sub

'======
Sub OKButtonHandler
'======
' an added security. Verify that the grid file has been properly
' created

Dim sRows, sCols As String
Dim i As Integer

szGridFilename = ReadControlValue(ID_EDIT_TEXT_FILENAME)

If szGridFilename <> "" Then
 If Right$(UCase$(szGridFilename),4) <> ".MIG" Then
 i = InStr(1, szGridFilename, ".")
 If i > 0 Then
 szGridFilename = Left$(szGridFilename, i-1)
 End If
 szGridFilename = szGridFilename + ".MIG"
 Open File szGridFilename For Output As #1
 Close File #1
 Alter Control ID_EDIT_TEXT_FILENAME Value szGridFilename
 End If
 Else
 Note "Invalid blank grid file name"
 Dialog Preserve
End If

sRows = ReadControlValue(ID_EDIT_TEXT_ROWS)
sCols = ReadControlValue(ID_EDIT_TEXT_COLS)
iRows = Val(sRows)
iCols = Val(sCols)
If iRows < 1 Or iCols < 1 Then
 Note "Rows and Columns need to be greater than 0"
 Dialog Preserve
End If

End Sub

